Review Article| Volume 20, ISSUE 1, P1-17, March 2012

A Comparison of Maxillofacial CBCT and Medical CT

      In 1972, the independent findings of Hounsfield and Cormack revolutionized diagnostic imaging with the invention of the computed tomography (CT) scanner [
      • Hounsfield G.N.
      Nobel lecture, 8 December 1979. Computed medical imaging.
      • Cormack A.M.
      Early two-dimensional reconstruction (CT scanning) and recent topics stemming from it. Nobel lecture, December 8, 1979.
      ]. For the first time, practitioners had access to x-ray devices that could generate narrow cross-sectional images, usually perpendicular to the long axis of the human body, hence, the term computed axial tomography or CAT scan. This technology, fan-beam CT, was the first practical electronic application of the tomographic principal in diagnostic imaging [
      • Ziesdes des Plantes B.G.
      Selected works of B.G. Ziesdes des Plantes.
      ] and provided images that eliminated the superimposition of adjacent anatomic structures inherent in conventional plain projection radiography and the blur of analog tomography. The availability of CT images facilitated new perspectives in imaging diagnosis by reducing much of the guesswork that was often interlaced with projection imaging. CT is now an essential imaging modality of the diagnostic algorithm for an increasing variety of clinical applications [
      • Mahesh M.
      Search for isotropic resolution in CT from conventional through multiple-row detector.
      ]. CT acquisition has subsequently been refined to incorporate a helical or spiral synchronous motion, fan-shaped beam, and multiple detector acquisition (MDCT), which enables fast scan times that provide high-quality images that can be integrated to produce a volumetric dataset. Although CT has been available for more than 4 decades, its clinical applications in dentistry have been limited because of the high equipment cost, limited access because of the certificate-of-need requirements in some jurisdictions, and radiation dose considerations (Fig. 1A).
      Figure thumbnail gr1
      Fig. 1(A) Modern multi-slice CT scanner (Toshiba Aquilion 64 [Toshiba Medical Systems, Tokyo, Japan]). (B) Modern CBCT scanner (NewTom Vgi [QR Verona, Verona, Italy]) similar in appearance to a panoramic machine.
      (Courtesy of TOSHIBA medical [A], NewTom Vgi [B]; with permission.)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


        • Hounsfield G.N.
        Nobel lecture, 8 December 1979. Computed medical imaging.
        J Radiol. 1980; 61: 459-468
        • Cormack A.M.
        Early two-dimensional reconstruction (CT scanning) and recent topics stemming from it. Nobel lecture, December 8, 1979.
        J Comput Assist Tomogr. 1980; 4: 658-664
        • Ziesdes des Plantes B.G.
        Selected works of B.G. Ziesdes des Plantes.
        ExcerptaMedica, Amsterdam1973 (p. 137–40)
        • Mahesh M.
        Search for isotropic resolution in CT from conventional through multiple-row detector.
        Radiographics. 2002; 22: 949-962
        • Robb R.A.
        • Lent A.H.
        • Gilbert B.K.
        • et al.
        The Dynamic Spatial Reconstructor: a computed tomography system for high-speed simultaneous scanning of multiple cross sections of the heart.
        J Med Syst. 1980; 4: 253-288
        • Robb R.A.
        The Dynamic Spatial Reconstructor: an x-ray video-fluoroscopic CT scanner for dynamic volume imaging of moving organs.
        IEEE Trans Med Imaging. 1982; 1: 22-33
        • Kalender W.A.
        Computed tomography. Fundamentals, system technology, image quality, applications.
        2nd edition. Puplicis Coroprate Publishing, Erlangen (Germany)2005
        • Bushberg J.T.
        • Siebert J.A.
        • Leidholdt E.M.
        • et al.
        The essential physics of medical imaging.
        Williams & Wilkins, Baltimore (MD)1993
        • Kalender W.A.
        • Seissler W.
        • Klotz E.
        • et al.
        Spiral volumetric CT with single breath hold technique, continuous transport, and continuous scanner rotation.
        Radiology. 1990; 176: 181-183
        • Flohr T.G.
        • Schaller S.
        • Stierstorfer K.
        • et al.
        Multi-detector row CT systems and image-reconstruction techniques.
        Radiology. 2005; 235: 756-773
        • Saini S.
        Multi-detector row CT: principles and practice for abdominal applications.
        Radiology. 2004; 233: 323-327
        • Dalrymple N.C.
        • Prasad S.R.
        • El-Mehri F.M.
        • et al.
        Price of isotropy in multidetector CT.
        Radiographics. 2007; 27: 49-62
        • Sukovic P.
        Cone beam computed tomography in craniofacial imaging.
        Orthod Craniofac Res. 2003; 6: 31-36
        • Hayakawa Y.
        • Sano T.
        • Sukovic P.
        • et al.
        Cone beam computed tomography – a paradigm shift for clinical dentistry.
        Nippon Dental Review. 2005; 65: 125-132
        • Farman A.G.
        • Levato C.M.
        • Scarfe W.C.
        A primer on cone beam computed tomography.
        Inside Dent. 2007; 3: 90-93
        • Scarfe W.C.
        • Farman A.G.
        Cone beam computed tomography: a paradigm shift for clinical dentistry.
        Australasian Dental Practice. 2007; : 102-110
        • Cho P.S.
        • Johnson R.H.
        • Griffin T.W.
        Cone beam CT for radiotherapy applications.
        Phys Med Biol. 1995; 40: 1863-1883
        • Feldkamp L.A.
        • Davis L.C.
        • Kress J.W.
        Practical cone-beam algorithm.
        J Opt Soc Am A. 1984; 1: 612-619
        • Wischmann H.A.
        • Luijendijk H.A.
        • Meulenbrugge H.J.
        • et al.
        Correction of amplifier nonlinearity, offset, gain, temporal artifacts, and defects for flat-panel digital imaging devices.
        in: Antonuk L.E. Yaffe M.J. Medical imaging 2002: physics of medical imaging - proceedings of SPIE. vol. 4682. SPIE, San Diego (CA)2002: 427-437
        • Grangeat P.
        Mathematical framework of cone beam 3D reconstruction via the first derivate of the radon transform.
        in: Herman G.T. Louis A.K. Natterer F. Mathematical methods in tomography. Springer, Berlin1991: 66-97
        • Buzug T.M.
        Computed tomography. From photon statistics to modern cone-beam CT.
        Springer-Verlag, Germany2008
        • Cody D.D.
        • Mahesh M.
        AAPM/RSNA physics tutorial for residents: technologic advances in multidetector CT with a focus on cardiac imaging.
        Radiographics. 2007; 27: 1829-1837
        • Baba R.
        • Ueda K.
        • Okabe M.
        Using a flat-panel detector in high resolution cone beam CT for dental imaging.
        Dentomaxillofac Radiol. 2004; 33: 285-290
        • Jaffray D.A.
        • Siewerdsen J.H.
        Cone-beam computed tomography with a flat panel imager: initial performance characterization.
        Med Phys. 2000; 27: 1311-1323
        • Koyama S.
        • Aoyama T.
        • Oda N.
        • et al.
        Radiation dose evaluation in tomosynthesis and C-arm cone-beam CT examinations with an anthropomorphic phantom.
        Med Phys. 2010; 37: 4298-4306
        • Scarfe W.C.
        • Farman A.G.
        What is cone-beam CT and how does it work?.
        Dent Clin North Am. 2008; 52: 707-730
        • Baba R.
        • Konno Y.
        • Ueda K.
        • et al.
        Comparison of flat panel detector and image intensifier detector for cone beam CT.
        Comput Med Imaging Graph. 2002; 26: 153-158
        • Tagushi K.
        • Aragate H.
        Algorithm for image reconstruction in multi-slice helical CT.
        Med Phys. 1998; 25: 550-561
      1. American College of Radiology. ACR appropriateness criteria. Available at: Accessed November 29, 2011.

        • Carter L.
        • Farman A.G.
        • Geist J.
        • et al.
        American Academy of Oral and Maxillofacial Radiology executive opinion statement on performing and interpreting diagnostic cone beam computed tomography.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 106: 561-562
        • American Association of Endodontists
        • American Academy of Oral and Maxillofacial Radiology
        Use of cone-beam computed tomography in endodontics joint position statement of the American Association of Endodontists and the American Academy of Oral and Maxillofacial Radiology.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011; 111: 234-237
        • Valentin J.
        The 2007 recommendations of the International Commission on Radiological Protection. Publication 103.
        Ann ICRP. 2007; 37: 1-332
        • Ludlow J.B.
        • Davies-Ludlow L.E.
        • White S.C.
        Patient risk related to common dental radiographic examinations: the impact of 2007 International Commission on Radiological Protection recommendations regarding dose calculation.
        J Am Dent Assoc. 2008; 139: 1237-1243
        • Ludlow J.B.
        • Ivanovic M.
        Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008; 106: 106-114
        • Loubele M.
        • Bogaerts R.
        • Van Dijck E.
        • et al.
        Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications.
        Eur J Radiol. 2009; 71: 461-468
        • Pauwels R.
        • Beinsberger J.
        • Collaert B.
        • et al.
        Effective dose range for dental cone beam computed tomography scanners. The SEDENTEXCT Project Consortium (2010).
        Eur J Radiol. 2010; ([Epub ahead of print])
        • Hashimoto K.
        • Arai Y.
        • Iwai K.
        • et al.
        A comparison of a new limited cone beam computed tomography machine for dental use with a multi-detector row helical CT machine.
        Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003; 95: 371-377
        • Hashimoto K.
        • Katsumata S.
        • Araki M.
        • et al.
        Comparison of image performance between cone beam computed tomography for dental use and four-row multi-detector helical CT.
        J Oral Sci. 2006; 48: 27-34
        • Loubele M.
        • Maes F.
        • Jacobs R.
        • et al.
        Comparative study of image quality for MSCT and CBCT scanners for dentomaxillofacial radiology applications.
        Radiat Prot Dosimetry. 2008; 129: 222-226
        • Suomalainen A.
        • Kiljunen T.
        • Käser Y.
        • et al.
        Dosimetry and image quality of four dental cone beam computed tomography scanners compared with multislice computed tomography scanners.
        Dentomaxillofac Radiol. 2009; 38: 367-378
        • Pauwels R.
        • Stamatakis H.
        • Manousaridis G.
        • et al.
        Development and applicability of a quality control phantom for dental cone-beam CT.
        J Appl Clin Med Phys. 2011; 12: 3478
        • Chen L.
        • Shaw C.C.
        • Altunbas M.C.
        • et al.
        Spatial resolution properties in cone beam CT: a simulation study.
        Med Phys. 2008; 35: 724-734
        • Lofthag-Hansen S.
        • Thilander-Klang A.
        • Gröndahl K.
        Evaluation of subjective image quality in relation to diagnostic task for cone beam computed tomography with different fields of view.
        Eur J Radiol. 2010;
        • Miracle A.C.
        • Mukherji S.K.
        Cone beam CT of the head and neck, part 1: physical principles.
        AJNR Am J Neuroradiol. 2009; 30: 1088-1095
        • Gupta R.
        • Grasruck M.
        • Suess C.
        • et al.
        Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture and system characterization.
        Eur Radiol. 2006; 16: 1191-1205
        • Lagravère M.O.
        • Fang Y.
        • Carey J.
        • et al.
        Density conversion factor determined using a cone-beam computed tomography unit NewTom QR-DVT 9000.
        Dentomaxillofac Radiol. 2006; 35: 407-409
        • Lagravère M.O.
        • Carey J.
        • Ben-Zvi M.
        • et al.
        Effect of object location on the density measurement and Hounsfield conversion in a NewTom 3G cone beam computed tomography unit.
        Dentomaxillofac Radiol. 2008; 37: 305-308
        • Mah P.
        • Reeves T.E.
        • McDavid W.D.
        Deriving Hounsfield units using grey levels in cone beam computed tomography.
        Dentomaxillofac Radiol. 2010; 39: 323-335
        • Wiegert J.
        • Bertram M.
        • Schafer D.
        • et al.
        Soft tissue contrast resolution within the head of a human cadaver by means of flat panel detector based cone-beam CT.
        Proc SPIE. 2004; 5368: 330-337
        • Jarry G.
        • Graham S.A.
        • Moseley D.J.
        • et al.
        Characterization of scatter radiation in kV CBCT images using Monte Carlo simulations.
        Med Phys. 2006; 33: 4320-4329
        • Malusek A.
        • Sandborg M.
        • Carlsson G.A.
        Simulation of scatter in cone beam CT: effect on projection image quality.
        Proc SPIE. 2003; 5030: 740-751
        • Curry T.S.
        • Dowdey J.E.
        • Murry R.C.
        Christensen’s physics of diagnostic radiology.
        4th edition. Lea & Febiger, Philadelphia1990
        • Draenert F.G.
        • Coppenrath E.
        • Herzog P.
        • et al.
        Beam hardening artifacts occur in dental implant scans with the NewTom come beam CT but not with the dental 4-rowmultidetector CT.
        Dentomaxillofac Radiol. 2007; 36: 198-203